ELSEVIER

Available online at www.sciencedirect.com

ScienceDirect

Cognitive Systems Research 10 (2009) 216-228

www.elsevier.com/locate/cogsys

Using analogical mapping to simulate time-course phenomena
in perceptual similarity

Action editor: Angela Schwering

Andrew Lovett*, Dedre Gentner, Kenneth Forbus, Eyal Sagi

Northwestern University, 2133 Sheridan Road, Evanston, IL 60208-3118, United States

Received 12 March 2008; accepted 19 March 2008
Available online 10 January 2009

Abstract

We present a computational model of visual similarity. The model is based upon the idea that perceptual comparisons may utilize the
same mapping processes as are used in analogy. We use the Structure Mapping Engine (SME), a model of Gentner’s structure-mapping
theory of analogy, to perform comparison on representations that are automatically generated from visual input. By encoding visual
scenes incrementally and sampling the output of SME at multiple stages in its processing, we are able to model not only the output
of similarity judgments, but the time course of the comparison process. We demonstrate the model’s effectiveness by replicating the
results from three psychological studies that bear on the time course of comparison.
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1. Introduction

There is accumulating evidence that analogical processes
play a role in many high-level cognitive operations, from
language acquisition (Gentner & Namy, 2006), to scientific
discovery (Dunbar, 1999; Holyoak & Thagard, 1995). How-
ever, equally interesting is analogy’s role in low-level oper-
ations that are ubiquitous in our everyday lives. Gentner
and colleagues (Gentner & Markman, 1997; Medin, Gold-
stone, & Gentner, 1993) have suggested that individuals
determine the perceptual similarity of two simple images
via the same processes of structural alignment that are used
in conceptual analogies. For example, Markman and Gent-
ner (1996) demonstrated that in judging the similarity of
two images, participants attended more to alignable differ-
ences, those differences which were connected to the com-
mon structure of the images, than to differences unrelated
to the common structure. This finding is predicted by Gent-
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ner’s (1983) structure-mapping theory of analogy, in which
individuals compare cases by aligning their common struc-
ture, thereby highlighting the alignable differences.

Further support for the claim that similarity is deter-
mined via structure mapping comes from studies con-
ducted with the Structure Mapping Engine (SME)
(Falkenhainer, Forbus, & Gentner, 1989). SME is a com-
putational model based on structure-mapping theory. It
has been used in a number of cognitive simulations and
has successfully replicated human judgments in several
studies, including the conceptual similarity of stories
(Gentner, Ratterman, & Forbus, 1993) and the perceptual
similarity of basic visual patterns (Gentner, Rattermann,
Markman, & Kotovsky, 1995). However, previous work
has not tested SME’s ability to model the time course of
the comparison process.

In this paper, we use SME to simulate the time course of
comparison in three studies that utilize the visual same-dif-
ferent task. In the same-different task (Farell, 1985; Posner
& Mitchell, 1967; Tversky, 1969), participants are shown
two stimuli, a base image and a target image, and asked


mailto:andrew-lovett@northwestern.edu

A. Lovett et al. | Cognitive Systems Research 10 (2009) 216-228 217

to judge whether the stimuli are the same. A consistent
finding across a broad range of stimuli (see Farell, 1985
for a review) is that as the number of differences between
the stimuli increases, the time required to respond “differ-
ent” decreases. In contrast, the error rate for detecting that
stimuli are different typically remains fairly stable (and
low), regardless of the number of differences. Given enough
time, participants are generally able to detect that the stim-
uli are different, even when there is only a single difference
between them.

Goldstone and Medin (1994) studied the time course of
the same-different task in greater detail by limiting the
amount of time available for comparing the stimuli. They
found a shift over time. Under very short deadlines, partic-
ipants’ similarity judgments depend only on the attribute
matches between the two figures. However, when given
more time, participants rely more on the relational
matches. At this later stage, only those matches that are
consistent with a global mapping between the structure of
the stimuli contribute to the similarity of the stimuli.

A study by Sloutsky and Yarlas (submitted for publica-
tion) suggests that a further distinction must be made
between the time course of encoding stimuli and the time
course of comparing stimuli. Their results (described in
detail below) indicate that individuals are faster to encode
attributes than to encode relations when viewing a percep-
tual scene. Thus, there may be two factors that operate to
make relational matches occur later during comparison
than attribute matches: the time required for encoding
(Lovett, Gentner, & Forbus, 2006) and the time required
for comparison (Gentner & Sagi, 2006; Goldstone &
Medin, 1994).

We present a model of the same-different task that takes
account of both encoding and comparison processes. The
comparison process is modeled using SME. We argue that
the multiple stages that SME uses to construct mappings
provide part of the explanation for the rapid difference
judgments individuals make when either the stimuli are
very dissimilar or there is limited time for comparison
(Gentner & Sagi, 2006; Sagi, Gentner, & Lovett, in prepa-
ration). The encoding process is modeled as an incremen-
tal, any-time process in which attributes are encoded
before relations. We use automatically generated structural
representations of sketched stimuli, to reduce tailorability.

This paper describes our model of the same-different
task, using incremental encoding and SME’s multi-stage
comparison process to explain both time course and error
rate phenomena. We start with an overview of SME, focus-
ing on how SME’s operations are sampled to provide
same/different judgments that depend on timing. Next we
review three same-different studies that provide evidence
about time course phenomena, focusing on the constraints
they suggest for models. We then describe our model of the
encoding process, including automatic generation of repre-
sentations. We show that the combination of SME and our
model of encoding can replicate both timing and error rate
results from the three human studies.

2. The Structure-Mapping Engine

The Structure-Mapping Engine (SME) (Falkenhainer
et al., 1989; Forbus & Oblinger, 1990) is a computational
model of Gentner’s (1983) structure-mapping theory of
analogy. It takes as input two cases, a base and a target.
Each case is a structural description containing entities
and expressions. Expressions can describe attributes, such
as the color or shape of an object, or relations, such as
one object being larger than another, or above it. First-
order relations connect entities, whereas higher-order rela-
tions connect other relations. SME finds one or more map-
pings between the base and target by aligning their
common relational structure. It prefers mappings that
maximize systematicity, i.e., include larger relational struc-
tures, especially those containing higher-order relations
that constrain the lower-order relations.

A mapping has three parts: (1) A list of correspondences
between items (entities and expressions) in the base and tar-
get. (2) A structural evaluation score measuring the degree
of similarity between base and target. (3) A set of candidate
inferences about the target, supported by what is known
about the base and the correspondences.

SME computes mappings in three stages (see Fig. 1),
which we illustrate with an analogy between basketball
and soccer. Fig. 2 shows the expressions for the base case
(basketball) and the target case (soccer), with entities in
boldface. The expressions describing colors are examples
of attributes. The expressions beginning with score and
moveThrough are examples of first-order relations. The
cause expressions are examples of higher-order relations.

In the local match stage, SME computes all possible
match hypotheses between items in the base and target.
A match hypothesis is created between every pair of expres-
sions that share the same predicate. In the sports example,
there would be a match hypothesis between (white
net0) in the base and (white netl) in the target, as
well as a match hypothesis between (white net0) in
the base and (white soccer-ball) in the target.
Match hypotheses are formed for both attributes and rela-
tions, so there would also be a match hypothesis between
each of the two causal relationships in the base and the
causal relationship in the target. SME also attempts to cre-
ate match hypotheses between arguments of matched
expressions. This generates match hypotheses between enti-
ties. For example, the match hypothesis between (score
player0 points0) and (score playerl pointsl)
generates match hypotheses between player0 and
playerl and between points0 and pointsl. This pro-
cess of matching the arguments of matched predicates can
also lead to matches between expressions with non-identi-
cal predicates: e.g., matching two terms with different func-
tions, such as mapping pressure to temperature in a water/
heat analogy. The result of the local match construction
process is an inchoate, typically structurally inconsistent
set of match hypotheses, out of which consistent global
mappings emerge.
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Stage What Happens Produces Same-Different
Decision
Criterion
Local Match In parallel, match hypotheses Forest of local Feature
Construction conjectured between identical match hypotheses. overlap
predicates and corresponding Globally
arguments inconsistent
Kernel In parallel, find local maximal Kernels
Construction structurally consistent
overlapping structure.
Mapping Serially find one or more global Mappings Candidate
Construction mappings, via greedy merge inferences
of kernels
Fig. 1. The three stages of the Structure-Mapping Engine.
Basketball Soccer
(causes (causes
(tall player0) (moveThrough playerl soccer-ball netl)

(moveThrough player0 basketball net0))

(causes
(moveThrough player0 basketball net0)
(score player0 pointsl))

(orange basketball )
(white net0)

(score playerl pointsl))

(white soccer-ball )
(white netl)

Fig. 2. Possible representations for basketball and soccer.

In the kernel construction stage, SME explores struc-
tural consistency: it identifies groups of match hypotheses
that represent a local overlapping piece of consistent struc-
ture. These kernels are the pieces from which global map-
pings can be constructed. For example, the match
hypothesis between

(causes
net0)
(score player0 points0))

(moveThrough player0 basketball

and

(causes (moveThrough playerl soccer-ball
netl)
(score playerl pointsl))

and all of the match hypotheses for their subexpressions
will be grouped together as a kernel. Note that kernels
can overlap: there will also be a kernel for (white netO0)
and (white netl). Thus the correspondence be-
tween net0 and net1 will be a member of both kernels.

In the mapping construction stage, SME uses a greedy
merge process to combine these kernels into globally con-
sistent mappings. Both of the kernels above, for example,
will be in the same global mapping. The kernel which maps

(white net0) to (white soccer-ball) is inconsistent
because it puts net0 and soccer-ball into correspon-
dence, which would violate the 1:1 constraint of struc-
ture-mapping.

A global mapping’s structural evaluation score is the
sum of the scores calculated for the match hypotheses.
Match hypothesis scores are calculated by assigning a fixed
score to each match hypothesis and then allowing scores to
trickle down from match hypotheses between relations to
match hypotheses between those relations’ arguments, thus
allowing match hypotheses that support deep aligned
structure to receive particularly high scores. The map-
ping just described would receive a reasonably high struc-
tural evaluation score because it maps a higher-order
relationship.

Candidate inferences are computed by examining
unmapped base expressions that connect to the mapped
structure. For example, the causal relationship between
being tall and getting the ball through the net, found in
the base, is not a part of our mapping. Therefore, SME will
conjecture, based on the common relational structure,

(causes (tall playerl)
(moveThrough playerl soccer-ball netl)
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In other words, because being tall helps players score in
basketball, it may also help them score in soccer.

For modeling the same-different task, several features of
SME’s processing are important to notice (see again
Fig. 1). First, pairs of stimuli that are very different will
give rise to small sets of match hypotheses, because they
simply do not have very much in common. Pairs of stimuli
that are very similar (or identical) will give rise to larger
sets of match hypotheses. Thus the size of the set of match
hypotheses computed by SME in its first stage provides one
rapid decision criterion for same-different tasks. This crite-
rion, which we call the feature overlap, will be reasonably
accurate for saying that two things are different. It will
be less accurate for saying that two things are the same,
since the match hypothesis network is inchoate—many of
the match hypotheses may be mutually incompatible.

To compare pairs of stimuli that have moderate-to-large
feature overlap, a more fine-grained decision criterion is
needed. For this purpose, we can look for candidate infer-
ences after computing the full structural alignment. A can-
didate inference is generated only when there is a difference
connected to the common structure (in many cases an alig-
nable difference) between the two stimuli, and hence if a
candidate inference is detected, the stimuli cannot be iden-
tical. The accuracy of this decision criterion depends on the
accuracy of encoding. Decisions based on the presence of
candidate inferences will be slower than decisions based
on the number of match hypotheses because candidate
inferences appear only after all three stages of SME’s oper-
ation have finished.

3. The same-different task

We consider three studies of the same-different task, to
identify constraints on models of the task. In the first study
(Goldstone & Medin, 1994), participants were given limited
time to compare two stimuli before responding “same” or
“different.” In this study, the time limit applied to both
encoding the stimuli and comparing them; thus it is not
possible to distinguish between encoding time and compar-
ison time in interpreting the results. The second study
(Sloutsky & Yarlas, submitted for publication) placed a
limit only on the time available for encoding the base
image, thus (partially) isolating encoding time from com-
parison time. The final study (Gentner & Sagi, 2006) gave
the participants unlimited time for encoding and compari-
son, and examined the effects of varying the alignability of
the pairs of stimuli.

3.1. A same-different task with limited time to encode and
compare

3.1.1. Experiment

Goldstone and Medin (1994) investigated a same-differ-
ent task in which the base and target images consisted of
pairs of butterfly figures. Each butterfly varied along four
dimensions: head shape, tail shape, body texture, and wing

6 MIPs
BBBB 1 MOP

Fig. 3. A base and target image from Goldstone and Medin (1994).

texture. The two butterflies in the base image' differed
along all four dimensions (see the left image in Fig. 3).
The two butterflies in the target image were systematically
varied to produce different degrees of overlap with the but-
terflies in the base image. For example, if the two base but-
terflies were classified as AAAA and BBBB (where each
letter stands for a value along one of the four butterfly
dimensions), a target butterfly classified as AAAB would
share three features with the first base butterfly and one
feature with the second base butterfly.

In some cases, the attribute matches were consistent
with the best global mapping between the two images; in
other cases they were cross-mapped—that is, inconsistent
with the best global mapping (Gentner & Toupin, 1986).
Goldstone and Medin referred to these as matches-in-place
(MIPs) and matches-out-of-place (MOPs), respectively.
For example, consider the butterflies in Fig. 3. The best
global mapping between the base and target butterflies
would map the AAAA butterfly to the AAAB butterfly
and the BBBB butterfly to the BBBD butterfly. In this case,
butterflies AAAA and AAAB share three common attri-
butes, which qualify as MIPs. Butterflies BBBB and AAAB
also share one common attribute, but because these butter-
flies do not correspond to each other in the best global
mapping, this would be considered a cross-mapping, or
MOP.

Goldstone and Medin instructed participants to ignore
the relative positions of the butterflies. Thus, the only
information used for comparison should be the shape or
texture of the four butterfly parts (head, tail, body, wings),
along with the relations that tie those butterfly parts
together in a single butterfly.

3.1.2. Results

Goldstone and Medin ran their study under three dead-
line conditions that varied within subject: short (1 s), med-
ium (1.845s), and long (2.68s). The primary result of
interest was the effect that the number of MIPs and/or
MOPs had on overall accuracy on trials where the images
were different. Their chief findings are summarized in
Fig. 4. In the short deadline condition, when participants
had only 1 s to encode and compare the stimuli, both MIPs

' While in this study the figures were seen simultaneously, for conve-
nience we use the terms base and target to refer to the left and right
images.
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and MOPs had an equal effect on error rates. That is, par-
ticipants’ tendency to (incorrectly) respond “‘same” when
the stimuli were different increased with the number of
common attributes, regardless of whether those common
attributes were cross-mapped or consistent with the best
global mapping. However, in the medium and long dead-
line conditions, the effect of MOPs decreased significantly.
At long deadlines, participants were still influenced by the
number of structurally consistent matches, but they were
largely able to ignore the cross-mapped attributes.

3.1.3. Constraints on models

Goldstone and Medin’s results suggest that a model of
human performance on the same-different task must exhi-
bit at least two patterns of responses, depending on the
time available for encoding and comparison. When partic-
ipants are given a very small amount of time for compari-
son (1 s), all common features between the base and target
contribute to error rates equally, regardless of whether they
are consistent with the overall structural alignment. When
participants are given more time (1.84 or 2.68 s), the com-
mon features consistent with the structural alignment have
a much greater influence on error rates than those features
inconsistent with the alignment—it is as though partici-
pants no longer attended to the stray feature matches that
do not belong in the alignment.?

The pattern of responses found by Goldstone and
Medin is roughly consistent with SME’s local-to-global
matching process: early on, the feature overlap criterion,
which depends on the forest of local match hypotheses, will
be equally sensitive to MIPs and MOPs; but the candidate
inferences produced after a full structural alignment is
completed will be sensitive only to MIPs. However,
because the study did not distinguish between time for
encoding and time for comparison, it is unclear whether
the effect of a limited time for comparison should be mod-
eled in the encoding process or in the comparison process.

3.2. A same-different task with limited encoding time

3.2.1. Experiment

Sloutsky and Yarlas (submitted for publication) con-
ducted a study that at least partly separated encoding time
from comparison time. Instead of a simultaneous display,
they used a sequential display paradigm. Participants were
shown a base image for a limited amount of time, followed
by a mask. Afterwards, they were shown the target image
and given as much time as needed to determine whether

2 Note that both of these patterns differ from the pattern of performing
equally well regardless of the number of common features, a pattern found
in most studies where participants have ample time to make their
comparison (Farell, 1985). However, this high-accuracy pattern may
simply reflect one pole of the speed-accuracy tradeoff: when participants
have unlimited time to make a comparison, they can detect even a very
subtle difference, but when their time is limited, the error rate increases as
the number of differences decreases.

0.7
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0.3 —4—MIPs
0.2 ——-MOPs
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%Error + Overtime Responses
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% Error + Overtime Responses

SMIPs 6MIPs OMOPs 1MOP 2MOPs

Long Deadline Condition

Fig. 4. Results from Goldstone and Medin (1994).

the two images were the same. Since only the time to
encode the base image was manipulated, any effects on per-
formance can be attributed to the encoding process, not to
the comparison process.

The images used by Sloutsky and Yarlas were rows of
three simple objects. The three objects all had different col-
ors. However, two of them always had the same shape. The
shapes appeared in one of three relational patterns: ABA,
AAB, or ABB. For example, Fig. 5 shows a base image
with an ABA pattern. For each base image, there were
three target images that could differ from the base image
along two dimensions: attributes and relations. An element
match (E+) contained the same attributes as the base
image, in other words the same colors and shapes, while

O A ®
X R
O K |
O @ A

Fig. 5. Stimuli from Sloutsky and Yarlas (submitted for publication).
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an element mismatch (E—) contained entirely different attri-
butes. A relational match (R+) contained the same pattern
of shapes (e.g., ABA and CDC), whereas a relational mis-
match (R—) contained a different pattern of shapes. A
key point for our purposes is that a target with element
mismatches (E—/R+ or E—/R—) could be distinguished
from the base image by the artributes of the three objects;
but a target image that was purely a relational mismatch
(E+/R—) could only be distinguished from the base image
based on the relations between the three objects.

3.2.2. Results

In the ample time condition, the base image was shown
for 2100 ms, but in the /limited time condition, the base
image was shown for only 150 ms. The results are shown
in Fig. 6. When participants had ample time to encode
the base images, they performed at about the same level
across all three target types. However, when participants
had limited time to encode the base image, performance
varied markedly across conditions. Targets that contained
element mismatches (E—/R+ and E—/R—) showed only a
small drop in performance, but targets that were purely
relational mismatches (E+/R—) showed a much greater
decline. In other words, when participants had limited time
to encode the base image, they had much more difficulty
distinguishing it from a target image that differed only in
relations. These findings suggest that people encode attri-
butes before relations.

Regardless of time available for encoding the base, par-
ticipants responded ‘“different” more quickly after being
shown the target image when it was an element mis-
match—i.e., when the attributes were different (Fig. 7).
These results support the priority of attributes over rela-
tions in the comparison process, consistent with Goldstone
and Medin’s (1994) work and with the idea of an early

E Ample encoding
OLimited encoding

Mean d-prime score
w
L

E-/R- E-/R+
Foil type

E+R-

Fig. 6. Response accuracy in Sloutsky and Yarlas (submitted for
publication).

1800 -

@ Ample encoding
O Limited encoding

1600 -

1400 -

E-IR- E-IR+ E+/R-

Recognition item

Fig. 7. Response times from Sloutsky and Yarlas (submitted for
publication).

readout from the feature overlap stage of SME (followed
later by a full structural alignment).

3.2.3. Constraints on models

The Sloutsky and Yarlas study suggests two additional
constraints on models of the same-different task. First, it
suggests that attributes are encoded before relations. Sec-
ond, it suggests that the comparison process can operate
over incomplete representations. Even when people were
unable to completely encode the base image, the orderly
results show that they were able to carry out comparisons
between the partial representations and the new targets.

3.3. A same-different task with no time limit

3.3.1. Experiment

Gentner and Sagi (2006) conducted a same-different task
with simultaneous presentation and no time limits for
encoding or comparison. In one study, the materials were
images of heraldic shields (see Fig. 8). Participants were
presented with both high-similarity pairs (the rows in
Fig. 8) and low-similarity pairs (the columns). The high-
similarity pairs were highly alignable, containing most of
the same spatial relations but differing in some small
way, often a single attribute such as the color or shape of
an element of the shield. The low-similarity pairs were
entirely different.

3.3.2. Results

Unsurprisingly, participants were much faster to
respond “different” for the low-similarity pairs (consistent
with Farell’s (1985) review). The reaction times were
1380 ms for the high-similarity pairs and 880 ms for the
low-similarity pairs.
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Fig. 8. Shield stimuli from Gentner and Sagi (2006).

3.3.3. Constraints on models

The rapid “different” response for low-similarity pairs is
compatible with an early readout of feature overlap (num-
ber of match hypotheses) as a rapid decision criterion. If
the raw feature overlap is extremely low, then the pair can-
not possibly be identical (Gentner & Sagi, 2006), and a
“different” response can be quickly given. If the number
of match hypotheses is great enough so that the two items
could be the same, then the process continues to a full
structural alignment, resulting in a substantially slower
reaction time.

Importantly, incremental encoding alone cannot explain
these results. Attributes alone would be sufficient for distin-
guishing many of the high-similarity pairs, which often var-
ied in a single or a few attributes. Thus, if individuals
always engaged in a full comparison process but encoded
and compared attributes before relations, they would be
able to distinguish both the high-similarity and low-simi-
larity pairs after encoding only the attributes. The high dis-
crepancy in reaction times between high-similarity and low-
similarity pairs supports the idea of a comparison process
that can quickly render a rough measure of similarity.

3.4. Summary of constraints

To summarize, the constraints from the three studies
suggest the following model. (1) The encoding process
incrementally builds up representations over time, encod-
ing attributes before relations. (2) The comparison process
involves a local-to-global structural alignment process
with the following signatures. (a) Rapid difference judg-
ments can be made for very low-similarity pairs based
on there being too few feature matches between the base
and target (the feature overlap criterion), without consid-
eration for whether these matches are consistent with a
structural alignment between the base and target; (b)

when there is limited time provided for comparison, par-
ticipants’ judgments will reflect only this feature overlap
criterion; (c) judgments are slower for high-similarity
pairs, for which people must compute a full structural
alignment between the base and target and identify partic-
ular differences.

4. Modeling the same-different task

We start by describing our model of encoding, and then
describe in more detail how we use the model of encoding
and SME together to perform the same-different task.

4.1. Generating encodings using CogSketch

An important methodological technique in cognitive
simulation is to use automatically generated representa-
tions. Hand-coded representations can be useful for some
purposes, but they suffer from tailorability. By contrast,
automatically generated representations provide more con-
straints, since the representation for each stimulus is com-
puted by a precisely specified algorithm. This approach is
particularly strong when the same representation encoding
scheme is used across multiple simulations.

For our simulations, we use CogSketch (Forbus, Usher,
Lovett, Lockwood, & Wetzel, 2008), an open-domain
sketch understanding system, in the encoding process. Cog-
Sketch automatically constructs relational descriptions of
sketches drawn by a user. Modelers draw one or more
glyphs,® representing the objects in a sketch. CogSketch
then automatically computes a number of spatial relations
between the glyphs in a sketch. These include relative posi-
tion, containment, and whether two glyphs are intersecting.
CogSketch can also compare two glyph’s shapes to see how
they relate to each other, determining that two glyphs are
the same shape or that one glyph’s shape is a rotation,
reflection, or rescaling of another. The relations and attri-
butes encoded by CogSketch can be used to compare one
sketch to another with SME. Examples of the representa-
tions that CogSketch produces and how these have been
used in cognitive modeling can be found in (Lockwood,
Forbus, Halstead, & Usher, 2006; Lovett, Forbus, &
Usher, 2007).

The representation generated by CogSketch is the ideal
representation of a sketch, modeling what a person might
produce given ample time and attention. Our incremental
encoding model simulates the time course of encoding such
a representation. It produces an available representation,
the subset of the ideal representation that is available for
comparison, based on the amount of time provided for
encoding. We simulate a short encoding time by including
only the attributes, such as color and shape, in the available
representation. We simulate a very short encoding time by

3 In sketching, a glyph is the basic unit of a sketch, often corresponding
to a particular shape or object drawn by the user.
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including only a randomly selected subset of the attributes
in the available representation. In cases where there is
ample time available for encoding, the model will first pro-
duce an available representation containing only attributes
and then produce a follow-up representation with both
attributes and relations.*

4.2. Using comparison to make same-different decisions

As noted above, we use two distinct decision criteria,
based on sampling SME’s output at different stages in its
processing (see Fig. 1). The first is based on the overall size
of the match hypothesis network constructed in the first
stage, the feature overlap decision criterion. The number
of match hypotheses is normalized by the size of the base
and target representations. If the base and target are iden-
tical, there should be at least one match hypothesis for
every element in the base and for every element in the tar-
get, so the feature overlap should be 1.0 or higher. Of
course, a feature overlap slightly below 1.0 might simply
indicate a failure to encode one or two elements. A feature
overlap well below 1.0 should provide strong evidence that
the base and target representations are different, and thus
should allow a participant to give a fast “different”
response before completing the rest of the mapping. In
the simulations below, we used a threshold of 0.6 for indi-
cating fast “different” responses.

The second decision criterion is the candidate inference
criterion, which requires full SME processing. Since this
criterion is based on a structurally consistent global map-
ping, it is immune to match hypotheses that are inconsis-
tent with that mapping. Normally, the presence of any
candidate inferences should indicate that the stimuli being
compared are different.

We note that this model is incomplete, in that it does
not detect all non-alignable differences between stimuli.
That is, a difference unconnected to the aligned structure
would not produce a candidate inference, and thus would
not be detected by the model. However, several findings
(e.g., Gentner & Gunn, 2001; Markman & Gentner,
1996) suggest that alignable differences are more salient
than non-alignable differences in comparisons. Although
we have not so far found non-alignable differences to
play an important role, this issue deserves further
investigation.

4.3. Interaction between encoding and comparing

In our model of the same-different task, encoding and
comparison interact as follows. As attributes are encoded,
they are passed to SME. The comparison process is initi-
ated before the full representation is built, but only the first
stage (constructing the match hypothesis forest) is run at

4 A further step would be to prioritize the encoding order according to
the salience/psychological availability of particular predicates, but for now
we have kept the model as simple as possible.

this point.” We assume that this is a fast, parallel process
that can operate in parallel with continued encoding. Once
all the attributes have been encoded and matched, the
model checks whether the feature overlap has fallen below
a set criterion (0.6). If the feature overlap is below the
threshold, indicating that the two stimuli have far too
few feature matches to be identical, a “different” judgment
can be quickly rendered. Otherwise, the process continues.

Once the relations are encoded and SME has relations
available, the comparison process continues through the
other stages to a full structural alignment. At this point,
candidate inferences are available, and more subtle differ-
ences can be detected.

5. Simulation experiments

We now describe three experiments in which we simu-
lated the same-different tasks described above. The
assumptions made in simulating the three experiments are
described in Fig. 9.

5.1. Simulating a same-different task with ample time

5.1.1. Simulation

We begin by simulating the heraldic shield same-differ-
ent task from Gentner and Sagi (2006) because, while it
used the most complex stimuli, it is actually the most
straightforward to simulate (Sagi et al., in preparation).

The original heraldic shields (Gentner & Sagi, 2006)
contained a number of complex images that CogSketch
would have had difficulties representing. Therefore, we
constructed a new set of heraldic shields by replacing each
complex object with a basic geometric shape, while main-
taining the original spatial relations between the objects
within the shields. Contrast Fig. 10 with Fig. 8 for an
example. We ran a new set of participants on the same-
different task using these simplified shields to ensure that
the high-similarity/low-similarity differences would be
maintained. Participants were able to respond “different”
in 910 ms for the low-similarity shield pairs, but they
required on average 1270 ms for the high-similarity shield
pairs.

The heraldic shield stimuli were created in PowerPoint.
They were then imported into CogSketch. CogSketch
automatically created a glyph for each PowerPoint shape
and computed the spatial and shape relations between
glyphs, as well as shape and color attributes for each

glyph.

> We could also explore the possibility that some attribute kernels might
be computed at this point (that is, that SME might enter its second stage
and begin computing kernels before relations had been encoded). Then,
after relations are encoded, new kernels could be created and the mapping
could be updated, as when SME operates incrementally (Forbus,
Ferguson, & Gentner, 1994). For the present set of studies, the results
would not differ if this were the case.
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Task Condition Representation Decision Criterion
Butterflies Short Deadline Attributes only Feature overlap
(Goldstone &
Medium/Long Complete Feature overlap &
Medin 1994)
Deadline Candidate inferences
Three Shapes Limited encoding Partial (1-4) attributes Feature overlap &
(Sloutsk & Yarlas, time for base Candidate inferences
submitted)
Ample encoding Complete Feature overlap &
Time Candidate inferences
Heraldic Shields Unlimited Complete Feature overlap &
(Gentner & Sagi, encoding time Candidate inferences
2006)

Fig. 9. Assumptions made for each of the three simulated studies. The short and long deadlines in the butterfly study refer to time for both encoding and

comparison.
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Fig. 10. Simplified shield stimuli.

5.1.2. Results

We presented the model with 24 high-similarity and 24
low-similarity pairs. As expected, the feature overlap
(match hypotheses) scores were far lower for the low-simi-
larity shield pairs. The low-similarity pairs received an
average score of .45, while the high-similarity pairs received
an average score of 1.12. 85% of the low-similarity pairs
received a score below the .60 threshold for fast “different”
responses, while 0% of the high-similarity pairs resulted in
a fast response. These results match the finding that partic-
ipants responded ‘“‘different” faster for the low-similarity
pairs.

When the feature overlap criterion does not provide an
answer, the candidate inference criterion is used. In this
simulation, our model was able to find at least one candi-

|

Fig. 11. Stimulus sketched for the Sloutsky and Yarlas (submitted for
publication) simulation.

date inference in every comparison, indicating that, given
sufficient time, the model could always correctly respond
“different.”

5.2. Simulating a same-different task with limited encoding
time

5.2.1. Simulation

To simulate the Sloutsky and Yarlas (submitted for pub-
lication) study, we sketched six base images (see Fig. 11 for
an example), along with the E—/R—, E—/R+, and E+/R—
target images for each base. We sketched two base images
for each of the three relational patterns (ABA, AAB,
ABB). R— (relational mismatch) target images for these
bases used each of the other two patterns. Thus, the six
stimulus sets covered all possible combinations of rela-
tional patterns in the base and target images. Because there
is no theoretical or functional difference between one shape
or color and another, these six stimulus sets were sufficient
for our simulation.

As in the previous study, CogSketch automatically com-
puted spatial and shape relations between the glyphs, along
with attributes. However, for this simulation, CogSketch
also computed positional attributes for each glyph
(firstShape, secondShape, or thirdShape), rep-
resenting where in the row each shape was located.
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For the ample encoding condition, in which participants
had 2100 ms to encode the base image before it was
masked, our encoding model fully encoded the base image.
In the limited encoding condition, participants were given
only 150 ms to encode the base image. To simulate this
extremely limited encoding time, our model encoded a ran-
dom subset (1-4 elements) of the attributes from the ideal
base representation.

5.2.2. Results

Because the attributes encoded in the limited encoding
time condition were chosen randomly, we ran the limited
encoding time simulation 30 times for each base image/tar-
get image combination and averaged the results. After-
wards, we averaged the results across the six stimulus sets
to get overall results. The error rate results are shown in
Fig. 12 (compare this to the human results in Fig. 6).
Because participants had unlimited time to make the com-
parison in this task, error rates were based on failure to dis-
tinguish between the base and target using either decision
criterion.

The simulated error rates line up well with the human
results found by Sloutsky and Yarlas. Given ample time
to encode the base, participants were highly accurate in dis-
tinguishing the target from the base for all target types.
When there was limited time to encode the base, accuracy
went down a small amount for the E— targets, the targets
that differed from the base in their attributes. However, the
accuracy went down much more for the E+/R— targets,
the targets that differed from the base only in their
relations.

We also simulated the reaction times for the same-differ-
ent judgment. As in the previous simulation, fast responses
were assumed for cases when the feature overlap score fell
below 0.6. The results are shown in Fig. 13 (compare this to
Fig. 7). The model correctly predicted that the response
time would be faster for the E— target images (the attribute
mismatches) than for the E+/R— target images (the rela-
tional mismatches), regardless of the encoding time
condition.
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Fig. 12. Predicted error rates in the Sloutsky and Yarlas (submitted for
publication) simulation.
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Fig. 13. Predicted reaction times in the Sloutsky and Yarlas (submitted
for publication) simulation.

5.3. Simulating a same-different task with limited
comparison time

5.3.1. Simulation

Goldstone and Medin’s (1994) butterfly experiment is
more difficult to simulate because the stimuli relied on a
certain amount of semantic knowledge. Participants had
to be able to segment the butterflies into four parts (head,
tails, body, and wings) and assign attributes based on the
shape or texture of each part. To simplify this task, we
sketched each butterfly as four glyphs, corresponding to
the four parts. Because there is no particular significance
to one feature or another, we replaced all butterfly part
attributes with colors. We used a different set of colors
for each of the different butterfly parts to ensure that there
would be no cross-mappings between, say, one butterfly’s
head and another butterfly’s tail. After drawing four glyphs
for a butterfly’s four parts, we grouped them together using
CogSketch’s manual grouping function. This causes Cog-
Sketch to create a new group glyph and assert part-whole
relations between the individual glyphs and the group
glyph in its representation.

We sketched a single base image (Fig. 14) and 13 target
images, representing the variations of MIPs and MOPs
examined by Goldstone and Medin in their study. In the
original study, the base images varied in the shape or tex-
ture assigned to each butterfly part. However, because
there is no theoretical difference between one shape or tex-
ture and another in the original study and no functional
difference between one color and another in our simulation,

Fig. 14. Stimulus sketched for the Goldstone and Medin (1994)
simulation.
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a single base image is sufficient for simulation. Since partic-
ipants were instructed to ignore the relative positions of the
butterflies, the spatial relations that CogSketch normally
computes between glyphs were not included. Only the attri-
butes of the individual glyphs (colors) and the part-whole
relationships that tied the parts of a butterfly together were
included.

To conduct this simulation, we assumed that in the short
deadline condition, participants only had time to compute
the feature overlap between the base and target. In the
medium and long deadline conditions, participants would
have had time to encode relations and calculate the candi-
date inferences between the base and target. Because same-
different judgments had to be made under a tight deadline,
we assume that in both cases, as the evidence for “‘differ-
ent” decreased (as the feature overlap rose towards 1.0,
and as the number of candidate inferences fell towards
0), the error rate would increase.

5.3.2. Results

As in the original study, we focused on the effect that
adding one or two MIPs (attribute matches consistent with
the global mapping) or MOPs (attribute cross-matches)
had on the decision criteria. Our results are shown in
Fig. 15 (compare to the human results in Fig. 4). As the
graph shows, when the model was only able to compute
a feature overlap score, MIPs and MOPs contributed
equally to that score. Each MIP or MOP increased the
number of match hypotheses between attributes in the base
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Fig. 15. Results from the Goldstone and Medin (1994) simulation.
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and target. However, after SME computed a global map-
ping between the base and target, only the MIPs contrib-
uted to the perceived similarity of the stimuli, as
indicated in a drop in the number of candidate inferences
detected.

6. Related work

Evans (1968) was the first to show that analogical com-
parison could be modeled in the visual domain. His early
system was able to solve geometric-analogy problems, i.e.,
problems of the form “A is to B as C is to...?” Evans’ sys-
tem was an important milestone historically, but it was only
designed to model the output behavior of people (i.e., to
choose the same answer that people did). It performed ana-
logical mapping via brute-force search, and thus it could
not be used to produce predictions of human timing data.

Goldstone’s SIAM model (1994) is a connectionist
model of similarity which builds upon the idea of analogi-
cal mapping. It uses an interactive activation process
between features and objects. Goldstone and Medin
(1994) used SIAM to successfully replicate the results from
their butterfly same-different task, thus demonstrating that
it could explain the time course of similarity in that task.
However, SIAM was limited in two respects: (1) it could
only perform similarity comparisons, not abstract analogi-
cal mapping; and (2) it operated on hand-coded representa-
tions. Rather than simulating the encoding process,
Goldstone and Medin made the assumption that the base
and target images would be encoded in their entirety before
the comparison process began.

Recently, it has been argued that SIAM models similar-
ity more accurately than SME because it can account for
the effect of attribute cross-matches (MOPs) on similarity.
Larkey and Markman (2005) conducted a study in which
participants were shown pairs of images and asked to rate
their similarity on a numerical scale. Each image consisted
of two geometric shapes that varied along two dimensions:
shape and color/texture. The experimenters found that par-
ticipants’ similarity scores increased for every common
attribute between the two images being compared. Even
those common attributes that were not part of the best
overall global mapping between the shapes, i.e., the MOPs,
contributed to similarity, although MIPs contributed more.
In contrast, SME’s structural evaluation scores are based
only on those correspondences found within the global
mapping.® The experimenters argued that this result dem-
onstrated a weakness of SME as a model of similarity.

© This critique does not characterize SME entirely correctly. While it is
true that attribute cross-matches (MOPs) like those described in this study
do not affect SME’s mappings, it is possible for relation cross-matches to
affect mappings. In particular, when match hypotheses are first con-
structed and scored, a match hypothesis may receive initial support from a
parent match hypothesis (a match hypothesis between relations whose
arguments are matched in the present match hypothesis), even though that
parent match hypothesis may not end up in the same global mapping.
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We believe there are two problems with this critique.
First, we believe that when participants compare simple
stimuli with very little structure, they are more likely to
attend to commonalities outside of the mapping between
the stimuli. This is particularly true when participants are
instructed to rate similarity among many very simple pairs,
a task that encourages them to search for any factor that
can differentiate the pairs. Essentially, we believe that the
actual global mappings are so trivially small that partici-
pants implicitly see further criteria, such as the presence
of a second possible mapping, on which to rate the pairs.
We suspect that as the complexity of the stimuli increases,
the influence of MOPs will decrease.

In addition, we believe that in Larkey and Markman’s
(2005) comparison of the computational models, they are
failing to distinguish between the mapping process and
the similarity function. Because SIAM is a connectionist
model, its output is a set of node activations. In order to
produce a similarity measure from this, a similarity func-
tion is run over all the activations. Nodes that are more
active, such as those consistent with the best overall map-
ping (MIPs), are weighted more highly than nodes which
are less active, such as those inconsistent with the overall
mapping (MOPs). Thus, the prediction that MIPs will con-
tribute strongly to similarity while MOPs will contribute
weakly is as much a product of this function as it is a prod-
uct of the mapping process itself.

The output of SME is a structurally consistent mapping
between elements in the base and elements in the target.
SME’s similarity score is based upon the elements in and
the structural depth of this mapping. However, in order
to compute the mapping, SME finds all possible correspon-
dences between the base and target. Thus, it would be quite
easy to apply a similarity function to a completed SME
mapping that allowed correspondences not in the mapping
to contribute. Such a function, like the one used in SIAM,
could weight correspondences outside of the mapping
lower than correspondences within the mapping. However,
until there is more evidence that MOPs play a significant
role in similarity, we believe it is better to leave SME’s sim-
ilarity score unchanged.

7. Discussion

By combining an incremental encoding process with
SME’s multi-stage analogical mapping process, our model
explains results across three same-different tasks that vary
in the time available for encoding and comparing the stim-
uli. The encoding process (using CogSketch) computes rep-
resentations automatically from stimuli that are similar or
identical to those shown to human participants. The com-
parison process makes use of the multiple stages in the
Structure Mapping Engine to compute decision criteria
whose profiles (including accuracy) vary according to the
time available for comparison. Because SME’s operation
here uses the same processes that have been used to simu-
late a large set of analogical tasks, the simulations demon-

strate that low-level perceptual similarity judgments can be
made using the same comparison process used in high-level
analogical reasoning.

Because our model of similarity distinguishes between
the encoding and comparison processes, it is able to make
a more complete set of predictions than models that begin
with a fully encoded representation. Any time participants
have ample time and resources, their similarity compari-
sons should be based on the best global mapping between
the stimuli being compared (we believe the question of
whether MOPs should contribute to similarity remains
open). However, any task that interferes with either partic-
ipants’ perception of the stimuli or their comparison of the
stimuli will result in their computing a more superficial
comparison based primarily on the attributes common to
the stimuli. Thus far, studies have demonstrated this effect
when there is limited time for encoding stimuli (Sloutsky &
Yarlas, submitted for publication), or when there is limited
for both encoding and comparing (Goldstone & Medin,
1994). However, no study has yet isolated the comparison
task from the encoding task and demonstrated the pre-
dicted effect when there is limited time only for compari-
son. We believe this is an important direction for further
studies of the time course of similarity.
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